The generator matrix 1 0 1 1 1 X^2+X 1 1 X^2+X 1 1 0 1 1 X^2 1 1 X 1 1 1 1 X^2 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X 0 X X X^2 X^2 0 0 X^2+X X^2+X 0 1 X+1 X^2+X X^2+1 1 0 X+1 1 X^2+X X^2+1 1 X^2 X^2+X+1 1 X 1 1 X^2 X X^2+X+1 1 1 1 0 X^2+X X+1 X^2+1 0 X^2+X X+1 X^2+1 X^2 X X^2 X X^2+X+1 1 X^2+X+1 1 0 X^2+X X X^2 X X 0 1 1 1 1 0 0 X^2 X^2 0 X^2 X^2 0 0 0 X^2 X^2 X^2 X^2 X^2 0 0 0 0 X^2 0 X^2 0 X^2 0 X^2 0 X^2 X^2 0 X^2 0 X^2 0 0 X^2 X^2 0 0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 0 X^2 0 X^2 generates a code of length 51 over Z2[X]/(X^3) who´s minimum homogenous weight is 50. Homogenous weight enumerator: w(x)=1x^0+68x^50+44x^52+8x^54+2x^56+4x^58+1x^64 The gray image is a linear code over GF(2) with n=204, k=7 and d=100. As d=101 is an upper bound for linear (204,7,2)-codes, this code is optimal over Z2[X]/(X^3) for dimension 7. This code was found by Heurico 1.16 in 0.0452 seconds.